Search results
Results From The WOW.Com Content Network
The dual divergence to a Bregman divergence is the divergence generated by the convex conjugate F * of the Bregman generator of the original divergence. For example, for the squared Euclidean distance, the generator is x 2 {\displaystyle x^{2}} , while for the relative entropy the generator is the negative entropy x log x ...
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
Numerous references to earlier uses of the symmetrized divergence and to other statistical distances are given in Kullback (1959, pp. 6–7, §1.3 Divergence). The asymmetric "directed divergence" has come to be known as the Kullback–Leibler divergence, while the symmetrized "divergence" is now referred to as the Jeffreys divergence.
A "positive divergence" or "bullish divergence" occurs when the price makes a new low but the MACD does not confirm with a new low of its own. A "negative divergence" or "bearish divergence" occurs when the price makes a new high but the MACD does not confirm with a new high of its own. [8]
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =
The FIM is a N × N positive semidefinite matrix. If it is positive definite, then it defines a Riemannian metric [11] on the N-dimensional parameter space. The topic information geometry uses this to connect Fisher information to differential geometry, and in that context, this metric is known as the Fisher information metric.
In probability theory, an -divergence is a certain type of function (‖) that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence , Hellinger distance , and total variation distance , are special cases of f {\displaystyle f} -divergence.
The only divergence on that is both a Bregman divergence and an f-divergence is the Kullback–Leibler divergence. [ 6 ] If n ≥ 3 {\displaystyle n\geq 3} , then any Bregman divergence on Γ n {\displaystyle \Gamma _{n}} that satisfies the data processing inequality must be the Kullback–Leibler divergence.