Search results
Results From The WOW.Com Content Network
Potassium ferrioxalate contains the iron(III) complex [Fe(C 2 O 4) 3] 3−. In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+.
It may be formed by the salt metathesis reaction of potassium chromate and iron(III) nitrate, which gives potassium nitrate as byproduct. 2 Fe(NO 3) 3 + 3 K 2 CrO 4 → Fe 2 (CrO 4)3 + 6 KNO 3. It also can be formed by the oxidation by air of iron and chromium oxides in a basic environment: 4 Fe 2 O 3 + 6 Cr 2 O 3 + 9 O 2 → 4 Fe 2 (CrO 4) 3
When Fe 2 O 3 ·H 2 O is heated, it loses its water of hydration. Further heating at 1670 K converts Fe 2 O 3 to black Fe 3 O 4 (Fe II Fe III 2 O 4), which is known as the mineral magnetite. Fe(O)OH is soluble in acids, giving [Fe(H 2 O) 6] 3+. In concentrated aqueous alkali, Fe 2 O 3 gives [Fe(OH) 6] 3−. [12]
In the absence of EDTA or similar chelating agents, ferric ions form insoluble solids and are thus not bioavailable. [1] Together with pentetic acid (DTPA), EDTA is widely used for sequestering metal ions. Otherwise these metal ions catalyze the decomposition of hydrogen peroxide, which is used to bleach pulp in papermaking. Several million ...
Its importance lies in its ability to mediate electron transfer. In the ferrous state (Fe 2+), iron acts as an electron donor, while in the ferric state (Fe 3+) it acts as an acceptor. Thus, iron plays a vital role in the catalysis of enzymatic reactions that involve electron transfer (reduction and oxidation, redox).
The reflux system in a typical industrial distillation column. Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial [1] and laboratory [2] distillations. It is also used in chemistry to supply energy to reactions over a long period of time.
The first stage of Fenton's reaction (oxidation of Fe 3+ with hydrogen peroxide) is used in Haber–Weiss reaction; Fenton's reagent can be used in organic synthesis reactions: e.g. hydroxylation of arenes via a free radical substitution; Conversion of benzene into phenol by using Fenton's reagent; Oxidation of barbituric acid into alloxan.
Ferric oxalate, also known as iron(III) oxalate, refers to inorganic compounds with the formula Fe 2 (C 2 O 4) 3 (H 2 O) x but could also refer to salts of [Fe(C 2 O 4) 3] 3-. Fe 2 (C 2 O 4) 3 (H 2 O) x are coordination polymers with varying degrees of hydration.