Search results
Results From The WOW.Com Content Network
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
If y is a variable that depends on x, then , read as "d y over d x" (commonly shortened to "d y d x"), is the derivative of y with respect to x. 2. If f is a function of a single variable x , then d f d x {\displaystyle \textstyle {\frac {\mathrm {d} f}{\mathrm {d} x}}} is the derivative of f , and d f d x ( a ) {\displaystyle \textstyle {\frac ...
A function :, with domain X and codomain Y, is bijective, if for every y in Y, there is one and only one element x in X such that y = f(x). In this case, the inverse function of f is the function f − 1 : Y → X {\displaystyle f^{-1}:Y\to X} that maps y ∈ Y {\displaystyle y\in Y} to the element x ∈ X {\displaystyle x\in X} such that y = f ...
The word "hyperbola" derives from the Greek ὑπερβολή, meaning "over-thrown" or "excessive", ... Hyperbola as affine image of y = 1/x.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have
"x^y = y^x - commuting powers". Arithmetical and Analytical Puzzles. Torsten Sillke. Archived from the original on 2015-12-28. dborkovitz (2012-01-29). "Parametric Graph of x^y=y^x". GeoGebra. OEIS sequence A073084 (Decimal expansion of −x, where x is the negative solution to the equation 2^x = x^2)
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...