When.com Web Search

  1. Ad

    related to: quadrature rule with equal spaces and probability examples images for classroom

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  3. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  4. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.

  5. Chebyshev–Gauss quadrature - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Gauss_quadrature

    In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

  6. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  7. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).

  8. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5).

  9. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    More generally, one can also consider integrands that have a known power-law singularity at x=0, for some real number >, leading to integrals of the form: + (). In this case, the weights are given [2] in terms of the generalized Laguerre polynomials:

  1. Related searches quadrature rule with equal spaces and probability examples images for classroom

    gaussian quadrature examplesgaussian quadrature explained