When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    In 1930 O. Perron constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all ...

  3. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations.

  4. Exponential stability - Wikipedia

    en.wikipedia.org/wiki/Exponential_stability

    It is important to note that in this example the system is not stable for all inputs. Give the marble a big enough push, and it will fall out of the ladle and fall, stopping only when it reaches the floor. For some systems, therefore, it is proper to state that a system is exponentially stable over a certain range of inputs.

  5. Lyapunov time - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_time

    The Lyapunov time mirrors the limits of the predictability of the system. By convention, it is defined as the time for the distance between nearby trajectories of the system to increase by a factor of e. However, measures in terms of 2-foldings and 10-foldings are sometimes found, since they correspond to the loss of one bit of information or ...

  6. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    At this time, the Lyapunov exponent λ is maximized, and the state is the most chaotic. The value of λ for the logistic map at r = 4 can be calculated precisely, and its value is λ = log 2. Although a strict mathematical definition of chaos has not yet been unified, it can be shown that the logistic map with r = 4 is chaotic on [0, 1 ...

  7. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  8. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.

  9. Chaotic mixing - Wikipedia

    en.wikipedia.org/wiki/Chaotic_mixing

    The Lyapunov exponent of a flow is a unique quantity, that characterizes the asymptotic separation of fluid particles in a given flow. It is often used as a measure of the efficiency of mixing, since it measures how fast trajectories separate from each other because of chaotic advection. The Lyapunov exponent can be computed by different methods: