When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    It features a collection of classification, regression, concept drift detection and anomaly detection algorithms. It also includes a set of data stream generators and evaluators. scikit-multiflow is designed to interoperate with Python's numerical and scientific libraries NumPy and SciPy and is compatible with Jupyter Notebooks.

  3. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours. [1]

  4. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    ELKI is an open-source Java data mining toolkit that contains several anomaly detection algorithms, as well as index acceleration for them. PyOD is an open-source Python library developed specifically for anomaly detection. [56] scikit-learn is an open-source Python library that contains some algorithms for unsupervised anomaly detection.

  5. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  6. Jubatus - Wikipedia

    en.wikipedia.org/wiki/Jubatus

    Jubatus is an open-source online machine learning and distributed computing framework developed at Nippon Telegraph and Telephone and Preferred Infrastructure. Its features include classification, recommendation, regression, anomaly detection and graph mining. It supports many client languages, including C++, Java, Ruby and Python.

  7. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu in 1996. [1]

  8. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  9. ELKI - Wikipedia

    en.wikipedia.org/wiki/ELKI

    Version 0.3 (March 2010) extended the choice of anomaly detection algorithms and visualization modules. [14] Version 0.4 (September 2011) added algorithms for geo data mining and support for multi-relational database and index structures. [10]