Ad
related to: parallel computing adalah pdf dalam pembelajaran dari 1 8 0 2u 0 1u
Search results
Results From The WOW.Com Content Network
Explicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance [1] to describe a computing paradigm that researchers had been investigating since the early 1980s. [2] This paradigm is also called Independence architectures.
An initial version of this model was introduced, under the MapReduce name, in a 2010 paper by Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. [2] As they and others showed, it is possible to simulate algorithms for other models of parallel computation, including the bulk synchronous parallel model and the parallel RAM, in the massively parallel communication model.
The Message Passing Interface (MPI) is a portable message-passing standard designed to function on parallel computing architectures. [1] The MPI standard defines the syntax and semantics of library routines that are useful to a wide range of users writing portable message-passing programs in C, C++, and Fortran.
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. [1] Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism.
Bit-level parallelism is a form of parallel computing based on increasing processor word size. Increasing the word size reduces the number of instructions the processor must execute in order to perform an operation on variables whose sizes are greater than the length of the word.
Atanasoff–Berry computer, the first computer with parallel processing [1] Instruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically, ILP refers to the average number of instructions run per step of this parallel execution. [2]: 5
Data-intensive computing is a class of parallel computing applications which use a data parallel approach to process large volumes of data typically terabytes or petabytes in size and typically referred to as big data.
In computing, multiple instruction, single data (MISD) is a type of parallel computing architecture where many functional units perform different operations on the same data. Pipeline architectures belong to this type, though a purist might say that the data is different after processing by each stage in the pipeline.