When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Generating function (physics) - Wikipedia

    en.wikipedia.org/wiki/Generating_function_(physics)

    Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation.

  3. Canonical transformation - Wikipedia

    en.wikipedia.org/wiki/Canonical_transformation

    Restricted canonical transformations are coordinate transformations where transformed coordinates Q and P do not have explicit time dependence, i.e., = (,) and = (,).The functional form of Hamilton's equations is ˙ =, ˙ = In general, a transformation (q, p) → (Q, P) does not preserve the form of Hamilton's equations but in the absence of time dependence in transformation, some ...

  4. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :

  5. Generating function transformation - Wikipedia

    en.wikipedia.org/wiki/Generating_function...

    The main article gives examples of generating functions for many sequences. Other examples of generating function variants include Dirichlet generating functions (DGFs), Lambert series, and Newton series. In this article we focus on transformations of generating functions in mathematics and keep a running list of useful transformations and ...

  6. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action angles result from a type-2 canonical transformation where the generating function is Hamilton's characteristic function (not Hamilton's principal function ).Since the original Hamiltonian does not depend on time explicitly, the new Hamiltonian (,) is merely the old Hamiltonian (,) expressed in terms of the new canonical coordinates, which we denote as (the action angles, which are the ...

  7. Symplectomorphism - Wikipedia

    en.wikipedia.org/wiki/Symplectomorphism

    Examples of symplectomorphisms include the canonical transformations of classical mechanics and theoretical physics, the flow associated to any Hamiltonian function, the map on cotangent bundles induced by any diffeomorphism of manifolds, and the coadjoint action of an element of a Lie group on a coadjoint orbit.

  8. Transform theory - Wikipedia

    en.wikipedia.org/wiki/Transform_theory

    Main examples of transforms that are both well known and widely applicable include integral transforms [1] such as the Fourier transform, the fractional Fourier Transform, [2] the Laplace transform, and linear canonical transformations. [3] These transformations are used in signal processing, optics, and quantum mechanics.

  9. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Affine transformation (Euclidean geometry) Bäcklund transform; Bilinear transform; Box–Muller transform; Burrows–Wheeler transform (data compression) Chirplet transform; Distance transform; Fractal transform; Gelfand transform; Hadamard transform; Hough transform (digital image processing) Inverse scattering transform; Legendre ...