Search results
Results From The WOW.Com Content Network
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
Here "T+" or "T−" denote that the result of the test is positive or negative, respectively. Likewise, "D+" or "D−" denote that the disease is present or absent, respectively. So "true positives" are those that test positive (T+) and have the disease (D+), and "false positives" are those that test positive (T+) but do not have the disease (D ...
The false positive rate (FPR) is the proportion of all negatives that still yield positive test outcomes, i.e., the conditional probability of a positive test result given an event that was not present. The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate.
Youden's J statistic is = + = + with the two right-hand quantities being sensitivity and specificity.Thus the expanded formula is: = + + + = (+) (+) In this equation, TP is the number of true positives, TN the number of true negatives, FP the number of false positives and FN the number of false negatives.
Also, in this case, the positive post-test probability (the probability of having the target condition if the test falls out positive), is numerically equal to the positive predictive value, and the negative post-test probability (the probability of having the target condition if the test falls out negative) is numerically complementary to the ...
The test is then read 48 to 72 hours later by measuring the size of the largest papule or induration. Indications are usually classified as positive, negative, or doubtful. [2] Because it is not possible to control precisely the amount of tuberculin used in the tine test, a positive test should be verified using the Mantoux test. [3]
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .