Search results
Results From The WOW.Com Content Network
Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession .
Rotation (angular displacement) of a planar figure around a point Rotational orbit v spin Relations between rotation axis, plane of orbit and axial tilt (for Earth) Mathematically, a rotation is a rigid body movement which, unlike a translation, keeps at least one point fixed. This definition applies to rotations in two dimensions (in a plane ...
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.
Axial precession is similar to the precession of a spinning top. In both cases, the applied force is due to gravity. For a spinning top, this force tends to be almost parallel to the rotation axis initially and increases as the top slows down. For a gyroscope on a stand it can approach 90 degrees.
The geographic poles are defined by the points on the surface of Earth that are intersected by the axis of rotation. The pole shift hypothesis describes a change in location of these poles with respect to the underlying surface – a phenomenon distinct from the changes in axial orientation with respect to the plane of the ecliptic that are caused by precession and nutation, and is an ...
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]
[5] [6] If is the initial position of an object and is the final position, then mathematically the displacement is given by: = The equivalent of displacement in rotational motion is the angular displacement measured in radians. The displacement of an object cannot be greater than the distance because it is also a distance but the shortest one.
Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel.