Search results
Results From The WOW.Com Content Network
In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory .
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
According to this formula, the graph of the applied force F s as a function of the displacement x will be a straight line passing through the origin, whose slope is k. Hooke's law for a spring is also stated under the convention that F s is the restoring force exerted by the spring on whatever is pulling its free end.
(This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.
Similarly, given points (x 1, y 1, z 1) ... While distance is a scalar quantity, or a magnitude, displacement is a vector quantity with both magnitude and direction.
(Oscillatory) displacement amplitude: Any quantity symbol typically subscripted with 0, m or max, or the capitalized letter (if displacement was in lower case). Here for generality A 0 is used and can be replaced. m [L] (Oscillatory) velocity amplitude V, v 0, v m. Here v 0 is used. m s −1 [L][T] −1 (Oscillatory) acceleration amplitude A, a ...
The differential equation above takes the form of 1D heat equation. The one-dimensional PDF below is the Green's function of heat equation (also known as Heat kernel in mathematics): P ( x , t ) = 1 4 π D t exp ( − ( x − x 0 ) 2 4 D t ) . {\displaystyle P(x,t)={\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x_{0})^{2}}{4Dt}}\right).}