Ad
related to: bernoulli equation solving process
Search results
Results From The WOW.Com Content Network
A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
When =, the differential equation is linear.When =, it is separable.In these cases, standard techniques for solving equations of those forms can be applied. For and , the substitution = reduces any Bernoulli equation to a linear differential equation
It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). [2] The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process. Since a Bernoulli trial has only two possible outcomes, it can be framed as a "yes or no" question. For example:
Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...
The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure and static pressure combined. [1]: § 3.5 In compressible flows, stagnation pressure is also equal to total pressure as well, provided that the fluid entering the stagnation point is brought to rest isentropically.
The substitution that is needed to solve this Bernoulli equation is = Substituting = + directly into the Riccati equation yields the linear equation ′ + (+) = A set of solutions to the Riccati equation is then given by = + where z is the general solution to the aforementioned linear equation.
The Bernoulli scheme, as any stochastic process, may be viewed as a dynamical system by endowing it with the shift operator T where T ( x k ) = x k + 1 . {\displaystyle T(x_{k})=x_{k+1}.} Since the outcomes are independent, the shift preserves the measure, and thus T is a measure-preserving transformation .