Search results
Results From The WOW.Com Content Network
Once the desired conversion is reached, excess solvent must be removed to obtain the pure polymer. Accordingly, solution polymerization is primarily used in applications where the presence of a solvent is desired anyway, as is the case for varnish and adhesives.
In addition, chemical compatibility refers to the container material being acceptable to store the chemical or for a tool or object that comes in contact with a chemical to not degrade. For example, when stirring a chemical, the stirrer must be stable in the chemical that is being stirred. Many companies publish chemical resistance charts.
Mixture of polymers and solvent on a lattice. Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing.
In polymer chemistry, compatibilization is the addition of a substance to an immiscible blend of polymers that will increase their stability. Polymer blends are typically described by coarse, unstable phase morphologies; this results in poor mechanical properties. Compatibilizing the system will make a more stable and better blended phase ...
The nearer two molecules are in this three-dimensional space, the more likely they are to dissolve into each other. To determine if the parameters of two molecules (usually a solvent and a polymer) are within range, a value called interaction radius is given to the substance being dissolved. This value determines the radius of the sphere in ...
B reflects the energy of binary interactions between solvent molecules and segments of polymer chain. When B > 0, the solvent is "good," and when B < 0, the solvent is "poor". For a theta solvent, the second virial coefficient is zero because the excess chemical potential is zero; otherwise it would fall outside the definition of a theta solvent.
The phase behavior of polymer solutions is an important property involved in the development and design of most polymer-related processes. Partially miscible polymer solutions often exhibit two solubility boundaries, the upper critical solution temperature (UCST) and the LCST, both of which depend on the molar mass and the pressure. At ...
Some polymer solutions also have a lower critical solution temperature (LCST) or lower bound to a temperature range of partial miscibility. As shown in the diagram, for polymer solutions the LCST is higher than the UCST, so that there is a temperature interval of complete miscibility, with partial miscibility at both higher and lower temperatures.