Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication.
The Python package NumPy provides a pseudoinverse calculation through its functions matrix.I and linalg.pinv; its pinv uses the SVD-based algorithm. SciPy adds a function scipy.linalg.pinv that uses a least-squares solver. The MASS package for R provides a calculation of the Moore–Penrose inverse through the ginv function. [24]
High-performance multi-threaded primitives for large sparse matrices. Support operations for iterative solvers: multiplication, triangular solve, scaling, matrix I/O, matrix rendering. Many variants: e.g.: symmetric, hermitian, complex, quadruple precision. oneMKL: Intel C, C++, Fortran 2003 2023.1 / 03.2023 Non-free Intel Simplified Software ...
In Python, the function cholesky from the numpy.linalg module performs Cholesky decomposition. In Matlab, the chol function gives the Cholesky decomposition. Note that chol uses the upper triangular factor of the input matrix by default, i.e. it computes = where is upper triangular. A flag can be passed to use the lower triangular factor instead.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
Arguments: A: nxn numpy matrix. b: n dimensional numpy vector. omega: relaxation factor. initial_guess: An initial solution guess for the solver to start with. convergence_criteria: The maximum discrepancy acceptable to regard the current solution as fitting.