Search results
Results From The WOW.Com Content Network
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
The implicit function theorem says that if is an invertible matrix, then there are , , and as desired. Writing all the hypotheses together gives the following ...
The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:
An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z . The graph of a function is usually described by an equation z = f ( x , y ) {\displaystyle z=f(x,y)} and is called an explicit representation.
The implicit function theorem describes conditions under which an equation (,) = can be solved implicitly for x and/or y – that is, under which one can validly write = or = (). This theorem is the key for the computation of essential geometric features of the curve: tangents , normals , and curvature .
Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Many other real functions are defined either by the implicit function theorem (the inverse function is a particular instance) or as solutions of differential equations. For example, the sine and the cosine functions are the solutions of the linear differential equation ″ + = such that