When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map provides a mapping from every point on a curve or a surface to a corresponding point on a unit sphere. In this example, the curvature of a 2D-surface is mapped onto a 1D unit circle. In differential geometry , the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the ...

  3. Gauss iterated map - Wikipedia

    en.wikipedia.org/wiki/Gauss_iterated_map

    In mathematics, the Gauss map (also known as Gaussian map [1] or mouse map), is a nonlinear iterated map of the reals into a real interval given by the Gaussian function:

  4. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    In mathematics, a chaotic map is a map (an evolution function) that exhibits some sort of chaotic behavior. Maps may be parameterized by a discrete-time or a continuous-time parameter. Discrete maps usually take the form of iterated functions. Chaotic maps often occur in the study of dynamical systems.

  5. Transverse Mercator projection - Wikipedia

    en.wikipedia.org/wiki/Transverse_Mercator_projection

    The projection is known by several names: the (ellipsoidal) transverse Mercator in the US; Gauss conformal or Gauss–Krüger in Europe; or Gauss–Krüger transverse Mercator more generally. Other than just a synonym for the ellipsoidal transverse Mercator map projection, the term Gauss–Krüger may be used in other slightly different ways:

  6. Conformal map projection - Wikipedia

    en.wikipedia.org/wiki/Conformal_map_projection

    In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map ...

  7. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The definition utilizes the local representation of a surface via maps between Euclidean spaces. There is a standard notion of smoothness for such maps; a map between two open subsets of Euclidean space is smooth if its partial derivatives of every order exist at every point of the domain.

  8. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin. Then f and its partial derivatives with respect to x and y vanish at (0,0).

  9. Exponential map (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Exponential_map...

    An important property of the exponential map is the following lemma of Gauss (yet another Gauss's lemma): given any tangent vector v in the domain of definition of exp p, and another vector w based at the tip of v (hence w is actually in the double-tangent space T v (T p M)) and orthogonal to v, w remains orthogonal to v when pushed forward via ...