When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...

  3. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]

  4. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    (This is just a consequence of the fact that the inverse of an N×M transpose is an M×N transpose, although it is also easy to show explicitly that P −1 composed with P gives the identity.) As proved by Cate & Twigg (1977), the number of fixed points (cycles of length 1) of the permutation is precisely 1 + gcd( N −1, M −1) , where gcd is ...

  5. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  6. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    [citation needed] The algorithms described below all involve about (1/3)n 3 FLOPs (n 3 /6 multiplications and the same number of additions) for real flavors and (4/3)n 3 FLOPs for complex flavors, [17] where n is the size of the matrix A. Hence, they have half the cost of the LU decomposition, which uses 2n 3 /3 FLOPs (see Trefethen and Bau 1997).

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Specifically, the singular value decomposition of an complex matrix ⁠ ⁠ is a factorization of the form =, where ⁠ ⁠ is an ⁠ ⁠ complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, ⁠ ⁠ is an complex unitary matrix, and is the conjugate transpose of ⁠ ⁠. Such decomposition ...

  9. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    An integral multiplier refers to the multiplier n being an integer: . An integer X shift right cyclically by k positions when it is multiplied by an integer n.X is then the repeating digits of 1 ⁄ F, whereby F is F 0 = n 10 k − 1 (F 0 is coprime to 10), or a factor of F 0; excluding any values of F which are not more than n.