Search results
Results From The WOW.Com Content Network
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
This is a quick summary of what the different cases mean. The cases are described in detail below. Think of a set of X numbered items (numbered from 1 to x), from which we choose n, yielding an ordered list of the items: e.g. if there are = items of which we choose =, the result might be the list (5, 2, 10). We then count how many different ...
This theorem is part of a collection of remarkably powerful theorems in combinatorics, all of which are related to each other in an informal sense in that it is more straightforward to prove one of these theorems from another of them than from first principles. These include: The König–Egerváry theorem (1931) (Dénes Kőnig, Jenő Egerváry)
A theorem in the Flajolet–Sedgewick theory of symbolic combinatorics treats the enumeration problem of labelled and unlabelled combinatorial classes by means of the creation of symbolic operators that make it possible to translate equations involving combinatorial structures directly (and automatically) into equations in the generating functions of these structures.
In proving results in combinatorics several useful combinatorial rules or combinatorial principles are commonly recognized and used. The rule of sum, rule of product, and inclusion–exclusion principle are often used for enumerative purposes. Bijective proofs are utilized to demonstrate that two sets have the same number of elements.
Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same integer partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence.
A selection problem requires to choose a sample of k elements out of a set of n elements. It is needed to know if the order in which the objects are selected matters and whether an object can be selected more than once or not. This table shows the operations that the model provides to get the number of different samples for each of the selections: