Search results
Results From The WOW.Com Content Network
Leptonic atoms, named using -onium, are exotic atoms constituted by the bound state of a lepton and an antilepton. Examples of such atoms include positronium (e − e +), muonium (e − μ +), and "true muonium" (μ − μ +). Of these positronium and muonium have been experimentally observed, while "true muonium" remains only theoretical.
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1 / 2 ) that does not undergo strong interactions. [1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos.
Like the periodic table, the list below organizes the elements by the number of protons in their atoms; it can also be organized by other properties, such as atomic weight, density, and electronegativity. For more detailed information about the origins of element names, see List of chemical element name etymologies.
This is a list of chemical elements and their atomic properties, ordered by atomic number (Z).. Since valence electrons are not clearly defined for the d-block and f-block elements, there not being a clear point at which further ionisation becomes unprofitable, a purely formal definition as number of electrons in the outermost shell has been used.
The tau (τ), also called the tau lepton, tau particle or tauon, is an elementary particle similar to the electron, with negative electric charge and a spin of 1 / 2 .Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin.
This is an index of lists of molecules (i.e. by year, number of atoms, etc.). Millions of molecules have existed in the universe since before the formation of Earth. Three of them, carbon dioxide, water and oxygen were necessary for the growth of life.
In classical mechanics, a force acting on a point-like particle can only alter the particle's dynamical state, i.e., its momentum, angular momentum, etc. Quantum field theory, however, allows interactions that can alter other facets of a particle's nature described by non-dynamical, discrete quantum numbers.
Feynman diagram of the dominant leptonic pion decay. Kaon decay in a nuclear emulsion. The positively-charged kaon enters at the top of the image and decays into a π − meson (a) and two π + mesons (b and c). The π − meson interacts with a nucleus in the emulsion at B. The π ± mesons have a mass of 139.6 MeV/c 2 and a mean lifetime of 2 ...