When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  3. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [2 ...

  4. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Redundant constraint can be identified by solving a linear program as follows. Given a linear constraints system, if the -th inequality is satisfied for any solution of all other inequalities, then it is redundant. Similarly, STIs refers to inequalities that are implied by the non-negativity of information theoretic measures and basic ...

  5. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to; A linear inequality looks exactly like a linear equation, with the inequality sign ...

  6. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The Barth surface, shown in the figure is the geometric representation of the solutions of a polynomial system reduced to a single equation of degree 6 in 3 variables. Some of its numerous singular points are visible on the image. They are the solutions of a system of 4 equations of degree 5 in 3 variables.

  7. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    There exist y 1, y 2 such that 6y 1 + 3y 2 ≥ 0, 4y 1 ≥ 0, and b 1 y 1 + b 2 y 2 < 0. Here is a proof of the lemma in this special case: If b 2 ≥ 0 and b 1 − 2b 2 ≥ 0, then option 1 is true, since the solution of the linear equations is = and =.

  8. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Recall that M = I − P where P is the projection onto linear space spanned by columns of matrix X. By properties of a projection matrix, it has p = rank(X) eigenvalues equal to 1, and all other eigenvalues are equal to 0. Trace of a matrix is equal to the sum of its characteristic values, thus tr(P) = p, and tr(M) = n − p. Therefore,

  9. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    One may then solve for ⁡ by inverting or solving the linear equations. To get X {\displaystyle X} , one must just reshape vec ⁡ ( X ) {\displaystyle \operatorname {vec} (X)} appropriately. Moreover, if A {\displaystyle A} is stable (in the sense of Schur stability , i.e., having eigenvalues with magnitude less than 1), the solution X ...