Search results
Results From The WOW.Com Content Network
IWE combines Word2vec with a semantic dictionary mapping technique to tackle the major challenges of information extraction from clinical texts, which include ambiguity of free text narrative style, lexical variations, use of ungrammatical and telegraphic phases, arbitrary ordering of words, and frequent appearance of abbreviations and acronyms ...
In this example, we will consider a dictionary consisting of the following words: {a, ab, bab, bc, bca, c, caa}. The graph below is the Aho–Corasick data structure constructed from the specified dictionary, with each row in the table representing a node in the trie, with the column path indicating the (unique) sequence of characters from the root to the node.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[(i-z+1)..i]. Thus all the longest common substrings would be, for each i in ret, S[(ret[i]-z)..(ret[i])]. The following tricks can be used to reduce the memory usage of an implementation:
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
The indexing expression for a 1-based index would then be ′ +. Hence, the efficiency benefit at run time of zero-based indexing is not inherent, but is an artifact of the decision to represent an array with the address of its first element rather than the address of the fictitious zeroth element.
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.
This is the case for tree-based implementations, one representative being the <map> container of C++. [16] The order of enumeration is key-independent and is instead based on the order of insertion. This is the case for the "ordered dictionary" in .NET Framework, the LinkedHashMap of Java and Python. [17] [18] [19] The latter is more common.