When.com Web Search

  1. Ad

    related to: arithmetic progression formula sum

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40}

  3. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    The case = coincides with that of the calculation of the arithmetic series, the sum of the first values of an arithmetic progression. This problem is quite simple but the case already known by the Pythagorean school for its connection with triangular numbers is historically interesting:

  4. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  5. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    Newton's identities express the sum of the k th powers of all the roots of a polynomial in terms of the coefficients in the polynomial. The sum of cubes of numbers in arithmetic progression is sometimes another cube. The Fermat cubic, in which the sum of three cubes equals another cube, has a general solution.

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The numbers of the form a + nd form an arithmetic progression, +, +, +, …, and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers (of the form 1 + 2n).

  8. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory, especially in Bernoulli processes. For instance, the sequence

  9. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...