Search results
Results From The WOW.Com Content Network
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
A hypersonic wind tunnel comprises in flow direction the main components: heater/cooler arrangements, dryer, convergent/divergent nozzle, test section, second throat and diffuser. A blow-down wind tunnel has a low vacuum reservoir at the back end, while a continuously operated, closed circuit wind tunnel has a high power compressor installation ...
C-D nozzles can accelerate the jet to supersonic velocities within the divergent section, whereas a convergent nozzle cannot accelerate the jet beyond sonic speed. [ 1 ] Propelling nozzles may have a fixed geometry, or they may have variable geometry to give different exit areas to control the operation of the engine when equipped with an ...
A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat).
De Laval nozzle – (or convergent-divergent nozzle, CD nozzle or con-di nozzle), is a tube that is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a hot, pressurized gas passing through it to a higher supersonic speed in the axial (thrust) direction, by converting the heat energy of the ...
If the fluid is a liquid, a different type of limiting condition (also known as choked flow) occurs when the venturi effect acting on the liquid flow through the restriction causes a decrease of the liquid pressure beyond the restriction to below that of the liquid's vapor pressure at the prevailing liquid temperature.
The rectangular convergent-divergent nozzle is fully variable for both the convergent throat and divergent areas for high nozzle pressure ratio and can vector ±20° in the pitch axis, greatly improving the aircraft's pitch authority by augmenting the pitching moment of the tail with engine thrust; this enables the F-22 to remain controllable ...
This includes convergent and convergent-divergent nozzles that may be fixed or geometrically variable. It also includes variable mechanisms within a fixed nozzle, such as rotating cascades [21] and rotating exit vanes. [22] Within these aircraft nozzles, the geometry itself may vary from two-dimensional (2-D) to axisymmetric or elliptic.