Search results
Results From The WOW.Com Content Network
Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism. Action potential in a neuron, showing depolarization, in which the cell's internal charge becomes less negative (more positive), and repolarization, where the internal charge returns to a more negative value.
Hyperpolarization is a change in a cell's membrane potential that makes it more negative. Cells typically have a negative resting potential, with neuronal action potentials depolarizing the membrane. Cells typically have a negative resting potential, with neuronal action potentials depolarizing the membrane.
This causes brief hyperpolarization of the membrane, that is, the membrane potential becomes transiently more negative than the normal resting potential. Until the potassium conductance returns to the resting value, a greater stimulus will be required to reach the initiation threshold for a second depolarization.
Threshold decrease is evident during extensive depolarization, and threshold increase is evident with extensive hyperpolarization. With hyperpolarization, there is an increase in the resistance of the internodal membrane due to closure of potassium channels, and the resulting plot "fans out".
Hyperpolarization is the spin polarization of the atomic nuclei of a material in a magnetic field far beyond thermal equilibrium conditions determined by the Boltzmann distribution. [1] It can be applied to gases such as 129 Xe and 3 He , and small molecules where the polarization levels can be enhanced by a factor of 10 4 –10 5 above thermal ...
During single action potentials, transient depolarization of the membrane opens more voltage-gated K + channels than are open in the resting state, many of which do not close immediately when the membrane returns to its normal resting voltage. This can lead to an "undershoot" of the membrane potential to values that are more polarized ...
Together with stereocilia, the kinocilium regulates depolarization and hyperpolarization of the hair cell, which is a neuron that can generate action potentials. When the stereocilia and kinocilium move further apart, the cell hyperpolarizes. When they move closer together, the cell depolarizes and may fire an action potential. [1]
This depolarization is called an EPSP, or an excitatory postsynaptic potential, and the hyperpolarization is called an IPSP, or an inhibitory postsynaptic potential. The only influences that neurons can have on one another are excitation, inhibition, and—through modulatory transmitters—biasing one another's excitability.