Search results
Results From The WOW.Com Content Network
At first, the population growth rate is fast, but it begins to slow as the population grows until it levels off to the maximum growth rate, after which it begins to decrease (figure 2). The equation for figure 2 is the differential of equation 1.1 ( Verhulst's 1838 growth model ): [ 13 ]
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
When calculating or discussing relative growth rate, it is important to pay attention to the units of time being considered. [ 2 ] For example, if an initial population of S 0 bacteria doubles every twenty minutes, then at time interval t {\displaystyle t} it is given by solving the equation:
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards , who proposed the general form for the family of models in 1959.
If we ignore the problem of how consumption is distributed, then the rate of utility is a function of aggregate consumption. That is, U = U ( C , t ) {\displaystyle U=U(C,t)} . To avoid the problem of infinity, we exponentially discount future utility at a discount rate ρ ∈ ( 0 , ∞ ) {\displaystyle \rho \in (0,\infty )} .
The first principle of population dynamics is widely regarded as the exponential law of Malthus, as modelled by the Malthusian growth model.The early period was dominated by demographic studies such as the work of Benjamin Gompertz and Pierre François Verhulst in the early 19th century, who refined and adjusted the Malthusian demographic model.
The formula can be read as follows: the rate of change in the population (dN/dt) is equal to growth (rN) that is limited by carrying capacity (1 − N/K). From these basic mathematical principles the discipline of population ecology expands into a field of investigation that queries the demographics of real populations and tests these results ...