Search results
Results From The WOW.Com Content Network
The trajectory then generalizes (without air resistance) from a parabola to a Kepler-ellipse with one focus at the center of the Earth (shown in fig. 3). The projectile motion then follows Kepler's laws of planetary motion. The trajectory's parameters have to be adapted from the values of a uniform gravity field stated above.
A radial parabolic trajectory is a non-periodic trajectory on a straight line where the relative velocity of the two objects is always the escape velocity. There are two cases: the bodies move away from each other or towards each other. There is a rather simple expression for the position as function of time:
This can be shown to result in the trajectory being ideally a conic section (circle, ellipse, parabola or hyperbola) [10] with the central body located at one focus. Orbital trajectories are either circles or ellipses; the parabolic trajectory represents first escape of the vehicle from the central body's gravitational field.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft.
A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a ...
External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field.
The following image illustrates a circle (grey), an ellipse (red), a parabola (green) and a hyperbola (blue) A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0).
Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...