Search results
Results From The WOW.Com Content Network
Mitochondrial DNA is the small circular chromosome found inside mitochondria. These organelles, found in all eukaryotic cells, are the powerhouse of the cell. [1] The mitochondria, and thus mitochondrial DNA, are passed exclusively from mother to offspring through the egg cell.
In humans, mitochondrial DNA (mtDNA) forms closed circular molecules that contain 16,569 [4] [5] DNA base pairs, [6] with each such molecule normally containing a full set of the mitochondrial genes. Each human mitochondrion contains, on average, approximately 5 such mtDNA molecules, with the quantity ranging between 1 and 15. [ 6 ]
The genomes of most eukaryotic mitochondria and plastids are in a single circular chromosome, in line with their bacterial ancestor. However, a good number of eukaryotic species do harbor linear Mitochondrial DNA (mtDNA), some even broken into multiple molecules, across a wide variety of taxa: animals (mammals, medusozoans, sponges), fungi (especially yeast), plants, and Alveolatas.
For example, mitochondria in liver cells contain enzymes that allow them to detoxify ammonia, a waste product of protein metabolism. A mutation in the genes regulating any of these functions can result in mitochondrial diseases. Mitochondrial proteins (proteins transcribed from mitochondrial DNA) vary depending on the tissue and the species.
When it comes to insects' DNA, humans have a bit less in common. For example, fruit flies share 61 percent of disease-causing genes with humans, which was important when NASA studied the bugs to ...
Mitochondria with their mitochondrial DNA are already present in the egg cell before it gets fertilized by a sperm. In many cases of fertilization, the head of the sperm enters the egg cell; leaving its middle part, with its mitochondria, behind. The mitochondrial DNA of the sperm often remains outside the zygote and gets excluded from inheritance.
Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.
Trypanosoma brucei, the parasite which causes African trypanosomiasis (African sleeping sickness), is an example of a trypanosome with a kinetoplast. Its kinetoplast is easily visible in samples stained with DAPI , a fluorescent DNA stain , or by the use of fluorescent in situ hybridization (FISH) with BrdU, a thymidine analogue.