When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Water capacitor - Wikipedia

    en.wikipedia.org/wiki/Water_capacitor

    Graphical representation of an inductively coupled Marx generator, based on water capacitors. The blue is the water between the plates, and the balls in the central column are the spark gaps that break over to allow the capacitors to charge in parallel, and discharge rapidly in series. A water capacitor is a device that uses water as its ...

  3. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Consider a capacitor of capacitance C, holding a charge +q on one plate and −q on the other. Moving a small element of charge d q from one plate to the other against the potential difference V = q / C requires the work d W : d W = q C d q , {\displaystyle \mathrm {d} W={\frac {q}{C}}\,\mathrm {d} q,} where W is the work measured in joules, q ...

  4. Two capacitor paradox - Wikipedia

    en.wikipedia.org/wiki/Two_capacitor_paradox

    One of the capacitors is charged with a voltage of , the other is uncharged. When the switch is closed, some of the charge = on the first capacitor flows into the second, reducing the voltage on the first and increasing the voltage on the second. When a steady state is reached and the current goes to zero, the voltage on the two capacitors must ...

  5. Double-layer capacitance - Wikipedia

    en.wikipedia.org/wiki/Double-layer_capacitance

    Because an electrochemical capacitor is composed out of two electrodes, electric charge in the Helmholtz layer at one electrode is mirrored (with opposite polarity) in the second Helmholtz layer at the second electrode. Therefore, the total capacitance value of a double-layer capacitor is the result of two capacitors connected in series.

  6. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The −j phase indicates that the AC voltage V = ZI lags the AC current by 90°: the positive current phase corresponds to increasing voltage as the capacitor charges; zero current corresponds to instantaneous constant voltage, etc. Impedance decreases with increasing capacitance and increasing frequency. [33]

  7. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The total energy stored in a few-charge capacitor is = which is obtained by a method of charge assembly utilizing the smallest physical charge increment = where is the elementary unit of charge and = where is the total number of charges in the capacitor.

  8. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  9. Quantum capacitance - Wikipedia

    en.wikipedia.org/wiki/Quantum_capacitance

    Therefore, as the capacitor charges or discharges, the voltage changes at a different rate than the galvani potential difference. In these situations, one cannot calculate capacitance merely by looking at the overall geometry and using Gauss's law. One must also take into account the band-filling / band-emptying effect, related to the density ...