When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...

  3. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...

  4. Confusion of the inverse - Wikipedia

    en.wikipedia.org/wiki/Confusion_of_the_inverse

    Confusion of the inverse, also called the conditional probability fallacy or the inverse fallacy, is a logical fallacy whereupon a conditional probability is equated with its inverse; that is, given two events A and B, the probability of A happening given that B has happened is assumed to be about the same as the probability of B given A, when there is actually no evidence for this assumption.

  5. Denying the antecedent - Wikipedia

    en.wikipedia.org/wiki/Denying_the_antecedent

    One way to demonstrate the invalidity of this argument form is with an example that has true premises but an obviously false conclusion. For example:

  6. Inverse (logic) - Wikipedia

    en.wikipedia.org/wiki/Inverse_(logic)

    The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...

  7. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    The inverse is "If an object is not red, then it does not have color." An object which is blue is not red, and still has color. Therefore, in this case the inverse is false. The converse is "If an object has color, then it is red." Objects can have other colors, so the converse of our statement is false.

  8. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    A function is invertible if and only if its converse relation is a function, in which case the converse relation is the inverse function. The converse relation of a function f : X → Y {\displaystyle f:X\to Y} is the relation f − 1 ⊆ Y × X {\displaystyle f^{-1}\subseteq Y\times X} defined by the graph f − 1 = { ( y , x ) ∈ Y × X : y ...

  9. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).