Search results
Results From The WOW.Com Content Network
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
Zinc has an electron configuration of [Ar]3d 10 4s 2 and is a member of the group 12 of the periodic table. ... (60%, low-affinity) and transferrin (10%). [196]
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
This spacing is called the electron affinity (note that this has a different meaning than the electron affinity of chemistry); in silicon for example the electron affinity is 4.05 eV. [16] If the electron affinity E EA and the surface's band-referenced Fermi level E F-E C are known, then the work function is given by
It has a high ionisation energy (1350.8 kJ/mol), low electron affinity (estimated at −60 kJ/mol), and high electronegativity (2.966 χSpec). Krypton can be reacted with fluorine to form the difluoride, KrF 2. The reaction of KrF 2 with B(OTeF 5) 3 produces an unstable compound, Kr(OTeF 5) 2, that contains a krypton-oxygen bond.
These structures cause zinc to have two bonding d-orbitals and three low-lying non-bonding d-orbitals (see non-bonding orbital), which are available for binding. When zinc lacks electron donating ligands it is unable to obtain coordination saturation, which is a consequence of the large atomic radius and low electron deficiency of zinc.
where I is the ionization potential and A the electron affinity. This expression implies that the chemical hardness is proportional to the band gap of a chemical system, when a gap exists. The first derivative of the energy with respect to the number of electrons is equal to the chemical potential, μ, of the system,