Ad
related to: what is a ring math playground
Search results
Results From The WOW.Com Content Network
A ring is a set R equipped with two binary operations [a] + (addition) and ⋅ (multiplication) satisfying the following three sets of axioms, called the ring axioms: [1] [2] [3] R is an abelian group under addition, meaning that: (a + b) + c = a + (b + c) for all a, b, c in R (that is, + is associative). a + b = b + a for all a, b in R (that ...
If S is an integral extension of a commutative ring R, then S and R have the same dimension. Closely related concepts are those of depth and global dimension. In general, if R is a noetherian local ring, then the depth of R is less than or equal to the dimension of R. When the equality holds, R is called a Cohen–Macaulay ring.
Such a ring homomorphism R → End Z (M) is called a representation of R over the abelian group M; an alternative and equivalent way of defining left R-modules is to say that a left R-module is an abelian group M together with a representation of R over it. Such a representation R → End Z (M) may also be called a ring action of R on M.
Let be a group, written multiplicatively, and let be a ring. The group ring of over , which we will denote by [], or simply , is the set of mappings : of finite support (() is nonzero for only finitely many elements ), where the module scalar product of a scalar in and a mapping is defined as the mapping (), and the module group sum of two mappings and is defined as the mapping () + ().
The unit group of the ring M n (R) of n × n matrices over a ring R is the group GL n (R) of invertible matrices. For a commutative ring R, an element A of M n (R) is invertible if and only if the determinant of A is invertible in R. In that case, A −1 can be given explicitly in terms of the adjugate matrix.
Formally, the polynomial ring in n noncommuting variables with coefficients in the ring R is the monoid ring R[N], where the monoid N is the free monoid on n letters, also known as the set of all strings over an alphabet of n symbols, with multiplication given by concatenation. Neither the coefficients nor the variables need commute amongst ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The inclusion functor Ring → Rng has a left adjoint which formally adjoins an identity to any rng. The inclusion functor Ring → Rng respects limits but not colimits. The zero ring serves as both an initial and terminal object in Rng (that is, it is a zero object). It follows that Rng, like Grp but unlike Ring, has zero morphisms. These are ...