When.com Web Search

  1. Ads

    related to: example of rotation in geometry in real life

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    For example, to study the equations of ellipses and hyperbolas, the foci are usually located on one of the axes and are situated symmetrically with respect to the origin. If the curve (hyperbola, parabola , ellipse, etc.) is not situated conveniently with respect to the axes, the coordinate system should be changed to place the curve at a ...

  4. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    The rotations were described by orthogonal matrices referred to as rotation matrices or direction cosine matrices. When used to represent an orientation, a rotation matrix is commonly called orientation matrix, or attitude matrix. The above-mentioned Euler vector is the eigenvector of a rotation matrix (a rotation matrix has a unique real ...

  5. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of the vector field at any point is given by the rotation of an infinitesimal area in the xy-plane (for z-axis component of the curl), zx-plane (for y-axis component of the curl) and yz-plane (for x-axis component of the curl vector). This can be seen in the examples below.

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    In Euclidean geometry, a rotation is an example of an isometry, a transformation that moves points without changing the distances between them. Rotations are distinguished from other isometries by two additional properties: they leave (at least) one point fixed, and they leave " handedness " unchanged.

  7. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  8. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions , where they can be used to break down the rotations into simpler parts.

  9. Rotation - Wikipedia

    en.wikipedia.org/wiki/Rotation

    The rotation, restricted to this plane, is an ordinary 2D rotation. The proof proceeds similarly to the above discussion. First, suppose that all eigenvalues of the 3D rotation matrix A are real. This means that there is an orthogonal basis, made by the corresponding eigenvectors (which are necessarily orthogonal), over which the effect of the ...