Search results
Results From The WOW.Com Content Network
Some programs (such as MATLAB toolboxes) that design filters with real-valued coefficients prefer the Nyquist frequency (/) as the frequency reference, which changes the numeric range that represents frequencies of interest from [,] cycle/sample to [,] half-cycle/sample. Therefore, the normalized frequency unit is important when converting ...
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
The term Nyquist Sampling Theorem (capitalized thus) appeared as early as 1959 in a book from his former employer, Bell Labs, [22] and appeared again in 1963, [23] and not capitalized in 1965. [24] It had been called the Shannon Sampling Theorem as early as 1954, [25] but also just the sampling theorem by several other books in the early 1950s.
The sinc function as audio, at 2000 Hz (±1.5 seconds around zero) In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by = .. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x).
The first part of the expression, i.e. the 'sin(x)/x' part, is the frequency response of the sample and hold. Its amplitude decreases with frequency and it falls to 63% of its peak value at half the sampling frequency and it is zero at multiples of that frequency (since f s =1/W).
Sampling and quantization of a signal (red) for 4-bit LPCM over a time domain at specific frequency. In the diagram, a sine wave (red curve) is sampled and quantized for PCM. The sine wave is sampled at regular intervals, shown as vertical lines. For each sample, one of the available values (on the y-axis) is chosen.
The latter is the case when the sample times are equally spaced and sinusoids chosen as sines and cosines equally spaced in pairs on the frequency interval 0 to a half cycle per sample (spaced by 1/N cycles per sample, omitting the sine phases at 0 and maximum frequency where they are identically zero).