When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear strength (soil) - Wikipedia

    en.wikipedia.org/wiki/Shear_strength_(soil)

    The shear strength of soil depends on the effective stress, the drainage conditions, the density of the particles, the rate of strain, and the direction of the strain. For undrained, constant volume shearing, the Tresca theory may be used to predict the shear strength, but for drained conditions, the Mohr–Coulomb theory may be used.

  3. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    Different criteria can be used to define the "shear strength" and the "yield point" for a soil element from a stress–strain curve. One may define the peak shear strength as the peak of a stress–strain curve, or the shear strength at critical state as the value after large strains when the shear resistance levels off.

  4. Critical state soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Critical_state_soil_mechanics

    It's the point at which the soil cannot sustain any additional load without undergoing continuous deformation, in a manner similar to the behaviour of fluids. Certain properties of the soil, like porosity, shear strength, and volume, reach characteristic values. These properties are intrinsic to the type of soil and its initial conditions.

  5. Cohesion (geology) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(geology)

    Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction. In soils, true cohesion is caused by following: Electrostatic forces in stiff overconsolidated clays (which may be lost through weathering) Cementing by Fe 2 O 3, Ca CO 3, Na Cl, etc. There can also be apparent cohesion. This is caused by:

  6. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength. [1] In geotechnical engineering it is used to define shear strength of soils and rocks at different effective stresses.

  7. Slope stability - Wikipedia

    en.wikipedia.org/wiki/Slope_stability

    The stability of a slope is essentially controlled by the ratio between the available shear strength and the acting shear stress, which can be expressed in terms of a safety factor if these quantities are integrated over a potential (or actual) sliding surface. A slope can be globally stable if the safety factor, computed along any potential ...

  8. Dilatancy (granular material) - Wikipedia

    en.wikipedia.org/wiki/Dilatancy_(granular_material)

    In soil mechanics, dilatancy or shear dilatancy [1] is the volume change observed in granular materials when they are subjected to shear deformations. [ 2 ] [ 3 ] This effect was first described scientifically by Osborne Reynolds in 1885/1886 [ 4 ] [ 5 ] and is also known as Reynolds dilatancy .

  9. Soil sloughing - Wikipedia

    en.wikipedia.org/wiki/Soil_sloughing

    According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction. Shear force is significantly impacted by drainage conditions. [5]