When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  3. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Joseph-Louis Lagrange (1736–1813). In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action).

  4. Lagrangian - Wikipedia

    en.wikipedia.org/wiki/Lagrangian

    Lagrangian dual problem, the problem of maximizing the value of the Lagrangian function, in terms of the Lagrange-multiplier variable; See Dual problem; Lagrangian, a functional whose extrema are to be determined in the calculus of variations; Lagrangian submanifold, a class of submanifolds in symplectic geometry

  5. Lambda - Wikipedia

    en.wikipedia.org/wiki/Lambda

    Lambda denotes a Lagrange multiplier in multi-dimensional calculus. In solid-state electronics, lambda indicates the channel length modulation parameter of a MOSFET. In ecology, lambda denotes the long-term intrinsic growth rate of a population. This value is often calculated as the dominant eigenvalue of the age/size class matrix.

  6. Multiplier - Wikipedia

    en.wikipedia.org/wiki/Multiplier

    Lagrange multiplier, a scalar variable used in mathematics to solve an optimisation problem for a given constraint Multiplier (Fourier analysis) , an operator that multiplies the Fourier coefficients of a function by a specified function (known as the symbol)

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  8. Score test - Wikipedia

    en.wikipedia.org/wiki/Score_test

    Since function maximization subject to equality constraints is most conveniently done using a Lagrangean expression of the problem, the score test can be equivalently understood as a test of the magnitude of the Lagrange multipliers associated with the constraints where, again, if the constraints are non-binding at the maximum likelihood, the ...

  9. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.