When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic field solver - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field_solver

    Electromagnetic behavior is governed by Maxwell's equations, and all parasitic extraction requires solving some form of Maxwell's equations. That form may be a simple analytic parallel plate capacitance equation or may involve a full numerical solution for a complex 3D geometry with wave propagation.

  3. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics.

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]

  5. Computational electromagnetics - Wikipedia

    en.wikipedia.org/wiki/Computational_electromagnetics

    Maxwell's equations (in partial differential form) are modified to central-difference equations, discretized, and implemented in software. The equations are solved in a cyclic manner: the electric field is solved at a given instant in time, then the magnetic field is solved at the next instant in time, and the process is repeated over and over ...

  6. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    [24] [25] Maxwell deals with the motion-related aspect of electromagnetic induction, v × B, in equation (77), which is the same as equation (D) in Maxwell's original equations as listed below. It is expressed today as the force law equation, F = q ( E + v × B ) , which sits adjacent to Maxwell's equations and bears the name Lorentz force ...

  7. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    The structure of Maxwell relations is a statement of equality among the second derivatives for continuous functions. It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem).

  8. Finite-difference time-domain method - Wikipedia

    en.wikipedia.org/wiki/Finite-difference_time...

    Partial chronology of FDTD techniques and applications for Maxwell's equations. [5]year event 1928: Courant, Friedrichs, and Lewy (CFL) publish seminal paper with the discovery of conditional stability of explicit time-dependent finite difference schemes, as well as the classic FD scheme for solving second-order wave equation in 1-D and 2-D. [6]

  9. Plane wave expansion method - Wikipedia

    en.wikipedia.org/wiki/Plane_wave_expansion_method

    Plane wave expansion method (PWE) refers to a computational technique in electromagnetics to solve the Maxwell's equations by formulating an eigenvalue problem out of the equation. This method is popular among the photonic crystal community as a method of solving for the band structure (dispersion relation) of specific photonic crystal geometries.