When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  3. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory via the Probably Approximately Correct Learning (PAC) model. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the ...

  5. Algorithmic learning theory - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_learning_theory

    Synonyms include formal learning theory and algorithmic inductive inference [citation needed]. Algorithmic learning theory is different from statistical learning theory in that it does not make use of statistical assumptions and analysis. Both algorithmic and statistical learning theory are concerned with machine learning and can thus be viewed ...

  6. Timeline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_machine_learning

    Pioneering machine learning research is conducted using simple algorithms. 1960s: Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s

  7. Explainable artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Explainable_artificial...

    Machine learning (ML) algorithms used in AI can be categorized as white-box or black-box. [13] White-box models provide results that are understandable to experts in the domain. Black-box models, on the other hand, are extremely hard to explain and may not be understood even by domain experts. [14]

  8. Symbolic artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Symbolic_artificial...

    Machine learning is not confined to association rule mining, c.f. the body of work on symbolic ML and relational learning (the differences to deep learning being the choice of representation, localist logical rather than distributed, and the non-use of gradient-based learning algorithms).

  9. Stability (learning theory) - Wikipedia

    en.wikipedia.org/wiki/Stability_(learning_theory)

    A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels ("A" to "Z") as a training set. One ...