Search results
Results From The WOW.Com Content Network
In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman [1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).
"One can derive a coefficient defined on X, the dichotomous variable, and Y, the ranking variable, which estimates Spearman's rho between X and Y in the same way that biserial r estimates Pearson's r between two normal variables” (p. 91). The rank-biserial correlation had been introduced nine years before by Edward Cureton (1956) as a measure ...
Rank correlation coefficients, such as Spearman's rank correlation coefficient and Kendall's rank correlation coefficient (τ) measure the extent to which, as one variable increases, the other variable tends to increase, without requiring that increase to be represented by a linear relationship.
Either Pearson's , Kendall's τ, or Spearman's can be used to measure pairwise correlation among raters using a scale that is ordered. Pearson assumes the rating scale is continuous; Kendall and Spearman statistics assume only that it is ordinal.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .
Spearman's rank correlation coefficient; Mann–Whitney U test; Wilcoxon signed-rank test; Van der Waerden test; The distribution of values in decreasing order of rank is often of interest when values vary widely in scale; this is the rank-size distribution (or rank-frequency distribution), for example for city sizes or word frequencies.
In statistics to represent Spearman's rank correlation coefficient, commonly known as Spearman's rho [2] In options theory to represent the rate of change of a portfolio with respect to interest rates [3]