Search results
Results From The WOW.Com Content Network
In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons.
After the Born–Oppenheimer approximation paper, these papers remain his most cited, and were key factors in the rejuvenation of astrophysical research in the United States in the 1950s, mainly by John A. Wheeler. [62] Oppenheimer's papers were considered difficult to understand even by the standards of the abstract topics he was expert in.
The reduction from a fully quantum description to a classical potential entails two main approximations. The first one is the Born–Oppenheimer approximation, which states that the dynamics of electrons are so fast that they can be considered to react instantaneously to the motion of their nuclei. As a consequence, they may be treated separately.
This is to be contrasted with the Jahn–Teller effect which occurs for polyatomic molecules in electronic states that allow vibration through a symmetric nonlinear configuration, where the electronic state is degenerate, and which further involves a breakdown of the Born-Oppenheimer approximation but here caused by the vibrational kinetic ...
The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to ...
[4] [5] The form of the equation given here was derived by J. Robert Oppenheimer and George Volkoff in their 1939 paper, "On Massive Neutron Cores". [1] In this paper, the equation of state for a degenerate Fermi gas of neutrons was used to calculate an upper limit of ~0.7 solar masses for the gravitational mass of a neutron star. Since this ...
(The other is the full-CI limit, where the last two approximations of the Hartree–Fock theory as described above are completely undone. It is only when both limits are attained that the exact solution, up to the Born–Oppenheimer approximation, is obtained.) The Hartree–Fock energy is the minimal energy for a single Slater determinant.
This separation of the electronic and vibrational wavefunctions is an expression of the Born–Oppenheimer approximation and is the fundamental assumption of the Franck–Condon principle. Combining these equations leads to an expression for the probability amplitude in terms of separate electronic space, spin and vibrational contributions: