Search results
Results From The WOW.Com Content Network
The Tethys Himalaya is an approximately 100-km-wide synclinorium formed by strongly folded and imbricated, weakly metamorphosed sedimentary series. Several nappes, termed the "North Himalayan Nappes", [18] have also been described within this unit.
The Himalayas, or Himalaya (/ ˌ h ɪ m ə ˈ l eɪ. ə, h ɪ ˈ m ɑː l ə j ə / HIM-ə-LAY-ə, hih-MAH-lə-yə) [b] is a mountain range in Asia, separating the plains of the Indian subcontinent from the Tibetan Plateau. The range has several peaks exceeding an elevation of 8,000 m (26,000 ft) including Mount Everest, the highest mountain on ...
Understanding the formation of the Himalayan mountains has been a goal of structural geologists for a long time. Many of the problems and disagreements that geologists have with each other concerning the Himalayan orogeny involve the relationship between the observed geometry, or structures, with the various rock units (different types of rock).
The Himalayas belong to the Alpine Orogeny and are therefore among the younger mountain ranges on the planet, consisting mostly of uplifted sedimentary and metamorphic rock. Their formation is a result of a continental collision or orogeny along the convergent boundary between the Indo-Australian Plate and the Eurasian Plate .
The Lesser Himalayan Sequence is a unit emplaced before the mountain-building processes. [3] The Greater Himalayan Crystalline complex represents a high-grade unit moved towards SW from the hinterland. The Tethyan Himalayan Sequence represents strata deposited in the former passive margin in the Northern edge of Indian plate. [11] [12]
One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils.
Satellite image of the Himalayas Spatial arrangement of the Himalayan tectonostratigraphic zones. Modified from N.R. McKenzie et al 2011 [1]. Pre-collisional Himalaya is the arrangement of the Himalayan rock units before mountain-building processes resulted in the collision of Asia and India.
The Himalayan foreland basin was thus thought to be undeformed. Himalayan deformation has been shown to extend into the subsurface of the foreland basin, in the form of blind thrust faults, and strike-slip faults. [31] These faults reach over 37 km south of the Main Frontal Thrust, and are responsible for several modern-day topographic highs. [31]