When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    A training example of SVM with kernel given by φ((a, b)) = (a, b, a 2 + b 2) Suppose now that we would like to learn a nonlinear classification rule which corresponds to a linear classification rule for the transformed data points φ ( x i ) . {\displaystyle \varphi (\mathbf {x} _{i}).}

  4. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. [1] LS-SVMs are a class of kernel-based learning methods.

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  6. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    The hyperplane learned in feature space by an SVM is an ellipse in the input space. In machine learning , the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original ...

  7. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    In this example, the Gauss–Newton algorithm will be used to fit a model to some data by minimizing the sum of squares of errors between the data and model's predictions. In a biology experiment studying the relation between substrate concentration [ S ] and reaction rate in an enzyme-mediated reaction, the data in the following table were ...

  8. Split-step method - Wikipedia

    en.wikipedia.org/wiki/Split-step_method

    An example of usage of this method is in the field of light pulse propagation in optical fibers, where the interaction of linear and nonlinear mechanisms makes it difficult to find general analytical solutions. However, the split-step method provides a numerical solution to the problem.

  9. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations, F ( u , λ ) = 0. {\displaystyle F(\mathbf {u} ,\lambda )=0.} [ 1 ] The parameter λ {\displaystyle \lambda } is usually a real scalar and the solution u {\displaystyle \mathbf {u} } is an n -vector .