Search results
Results From The WOW.Com Content Network
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...
The asymmetric generalized normal distribution is a family of continuous probability distributions in which the shape parameter can be used to introduce asymmetry or skewness. [15] [16] When the shape parameter is zero, the normal distribution results. Positive values of the shape parameter yield left-skewed distributions bounded to the right ...
The Lévy skew alpha-stable distribution or stable distribution is a family of distributions often used to characterize financial data and critical behavior; the Cauchy distribution, Holtsmark distribution, Landau distribution, Lévy distribution and normal distribution are special cases. The Linnik distribution; The logistic distribution
The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...
Paul Montel first coined the term "normal family" in 1911. [4] [5] Because the concept of a normal family has continually been very important to complex analysis, Montel's terminology is still used to this day, even though from a modern perspective, the phrase pre-compact subset might be preferred by some mathematicians. Note that though the ...
The standard complex normal is the univariate distribution with =, =, and =. An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: μ = 0 {\displaystyle \mu =0} and C = 0 {\displaystyle C=0} . [ 2 ]
The Johnson's S U-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. [ 1 ] [ 2 ] Johnson proposed it as a transformation of the normal distribution : [ 1 ]
The equidensity contours of a non-singular multivariate normal distribution are ellipsoids (i.e. affine transformations of hyperspheres) centered at the mean. [29] Hence the multivariate normal distribution is an example of the class of elliptical distributions.