Search results
Results From The WOW.Com Content Network
Thick clouds reflect a large amount of incoming solar radiation, translating to a high albedo. Thin clouds tend to transmit more solar radiation and, therefore, have a low albedo. Changes in cloud albedo caused by variations in cloud properties have a significant effect on global climate, having the ability to spiral into feedback loops. [3]
Cloud albedo has substantial influence over atmospheric temperatures. Different types of clouds exhibit different reflectivity, theoretically ranging in albedo from a minimum of near 0 to a maximum approaching 0.8. "On any given day, about half of Earth is covered by clouds, which reflect more sunlight than land and water.
the cloud IR emissivity, with values between 0 and 1, with a global average around 0.7; the effective cloud amount, the cloud amount weighted by the cloud IR emissivity, with a global average of 0.5; the cloud (visible) optical depth varies within a range of 4 and 10. the cloud water path for the liquid and solid (ice) phases of the cloud particles
The data are used to analyze global cloud cover, a climate factor. Oceans reflect the least amount of light, roughly 10%. Land reflects 10–25% of sunlight, and clouds reflect around 50%. Thus, the part of Earth where it is daytime and from where the Moon is visible determines how bright the earthshine on the Moon appears at any given time.
High thin tropospheric clouds reflect less light because of the comparatively low concentration of constituent ice crystals or supercooled water droplets which results in a slightly off-white appearance. However, a thick dense ice-crystal cloud appears brilliant white with pronounced gray shading because of its greater reflectivity. [114]
The clouds do not become that color; they are reflecting long and unscattered rays of sunlight, which are predominant at those hours. The effect is much like if a person were to shine a red spotlight on a white sheet. In combination with large, mature thunderheads this can produce blood-red clouds.
Consequently, without the sun's heat, air cools, causing water droplets (or clouds) to revert to invisible vapor. "Along with the sudden darkness came a change in the clouds' color," Rao wrote of ...
Crepuscular rays usually appear orange because the path through the atmosphere at dawn and dusk passes through up to 40 times as much air as rays from a high Sun at noon. Particles in the air scatter short-wavelength light (blue and green) through Rayleigh scattering much more strongly than longer-wavelength yellow and red light.