Search results
Results From The WOW.Com Content Network
The atomic radius of a chemical element is a measure of the size of its atom, ... The value of the radius may depend on the atom's state and context. [1]
Under some definitions, the value of the radius may depend on the atom's state and context. [1] Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group ...
Nevertheless, the Bohr radius formula remains central in atomic physics calculations, due to its simple relationship with fundamental constants (this is why it is defined using the true electron mass rather than the reduced mass, as mentioned above). As such, it became the unit of length in atomic units.
The van der Waals radius, r w, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals ...
The atomic radius is half of the distance between two nuclei of two atoms. The atomic radius is the distance from the atomic nucleus to the outermost electron orbital in an atom . In general, the atomic radius decreases as we move from left-to-right in a period , and it increases when we go down a group .
A given atom has an atomic mass approximately equal (within 1%) to its mass number times the atomic mass unit (for example the mass of a nitrogen-14 is roughly 14 Da), but this number will not be exactly an integer except (by definition) in the case of carbon-12. [67] The heaviest stable atom is lead-208, [59] with a mass of 207.976 6521 Da. [68]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
298 pm – radius of a caesium atom, calculated to be the largest atomic radius; 340 pm – thickness of single layer graphene; 356.68 pm – width of diamond unit cell; 403 pm – width of lithium fluoride unit cell; 500 pm – Width of protein α helix; 543 pm – silicon lattice spacing; 560 pm – width of sodium chloride unit cell