Ads
related to: machine learning pros and conssap.com has been visited by 10K+ users in the past month
codefinity.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]
Augmented Analytics is an approach of data analytics that employs the use of machine learning and natural language processing to automate analysis processes normally done by a specialist or data scientist. [1] The term was introduced in 2017 by Rita Sallam, Cindi Howson, and Carlie Idoine in a Gartner research paper. [1] [2]
Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...
Automated decision-making involves using data as input to be analyzed within a process, model, or algorithm or for learning and generating new models. [7] ADM systems may use and connect a wide range of data types and sources depending on the goals and contexts of the system, for example, sensor data for self-driving cars and robotics, identity data for security systems, demographic and ...
Federated learning (also known as collaborative learning) is a machine learning technique focusing on settings in which multiple entities (often referred to as clients) collaboratively train a model while ensuring that their data remains decentralized. [1] This stands in contrast to machine learning settings in which data is centrally stored.