Search results
Results From The WOW.Com Content Network
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some ...
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
An arithmetico-geometric series is a series that has terms which are each the product of an element of an arithmetic progression with the corresponding element of a geometric progression. Example: 3 + 5 2 + 7 4 + 9 8 + 11 16 + ⋯ = ∑ n = 0 ∞ ( 3 + 2 n ) 2 n . {\displaystyle 3+{5 \over 2}+{7 \over 4}+{9 \over 8}+{11 \over 16}+\cdots =\sum ...
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...