Ads
related to: calculation for surface area
Search results
Results From The WOW.Com Content Network
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, [1] (with units of m 2 /kg or m 2 /g). Alternatively, it may be defined as SA per solid or bulk volume [ 2 ] [ 3 ] (units of m 2 /m 3 or m −1 ).
Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.
The curved surface area of the spherical segment bounded by two parallel disks is the difference of surface areas of their respective spherical caps. For a sphere of radius r {\displaystyle r} , and caps with heights h 1 {\displaystyle h_{1}} and h 2 {\displaystyle h_{2}} , the area is
BET theory can be applied to estimate the specific surface area of activated carbon from experimental data, demonstrating a large specific surface area, even around 3000 m 2 /g. [13] However, this surface area is largely overestimated due to enhanced adsorption in micropores, [ 6 ] and more realistic methods should be used for its estimation ...
The calculations Archimedes used to approximate the area numerically were laborious, and he stopped with a polygon of 96 sides. A faster method uses ideas of Willebrord Snell ( Cyclometricus , 1621), further developed by Christiaan Huygens ( De Circuli Magnitudine Inventa , 1654), described in Gerretsen & Verdenduin (1983 , pp. 243–250).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law. This principle applies to all solids. [3]