Ad
related to: optimal strategy for a game
Search results
Results From The WOW.Com Content Network
In a dynamic game, games that are played over a series of time, the strategy set consists of the possible rules a player could give to a robot or agent on how to play the game. For instance, in the ultimatum game , the strategy set for the second player would consist of every possible rule for which offers to accept and which to reject.
A variant first described by Claude Shannon provides an argument about the game-theoretic value of chess: he proposes allowing the move of “pass”. In this variant, it is provable with a strategy stealing argument that the first player has at least a draw thus: if the first player has a winning move in the initial position, let him play it, else pass.
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games.A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed). [1]
The problem of finding an optimal strategy in a differential game is closely related to the optimal control theory. In particular, there are two types of strategies: the open-loop strategies are found using the Pontryagin maximum principle while the closed-loop strategies are found using Bellman's Dynamic Programming method.
In this game the only Nash equilibrium is row playing h and t with equal probability and column playing H and T with equal probability. However, all pure strategies in this game are rationalizable. Consider the following reasoning: row can play h if it is reasonable for her to believe that column will play H.
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...
The ingredients of a stochastic game are: a finite set of players ; a state space (either a finite set or a measurable space (,)); for each player , an action set (either a finite set or a measurable space (,)); a transition probability from , where = is the action profiles, to , where (,) is the probability that the next state is in given the current state and the current action profile ; and ...