When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The tables contain the prime factorization of the natural numbers from 1 to 1000. When n is a prime number, the prime factorization is just n itself, written in bold below. The number 1 is called a unit. It has no prime factors and is neither prime nor composite.

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    The first 1000 prime numbers ... write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached. 2, 3, 211, 5, 23, 7 ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  5. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  6. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the ...

  7. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  8. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  9. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    Pollard's rho algorithm is an algorithm for integer factorization. It was invented by John Pollard in 1975. [1] It uses only a small amount of space, and its expected running time is proportional to the square root of the smallest prime factor of the composite number being factorized.