When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    The number of domino tilings of a 4×4 checkerboard is 36. [10] Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an Erdős–Woods number. [11] The sum of the integers from 1 to 36 is 666 (see number of the beast). 36 is also a ...

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form. Take the t first primes p 1 = 2, p 2 = 3, p 3 = 5, ..., p t, for some t ∈ N. Let f q be a random prime form of G Δ with (⁠ Δ / q ⁠) = 1. Find a generating set X of G Δ.

  4. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...

  5. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.

  6. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    It can be shown that 88% of all positive integers have a factor under 100 and that 92% have a factor under 1000. Thus, when confronted by an arbitrary large a , it is worthwhile to check for divisibility by the small primes, since for a = 1000 {\displaystyle a=1000} , in base-2 n = 10 {\displaystyle n=10} .

  7. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Start with division by 2: the number is even, and n = 2 · 693. Continue with 693, and 2 as a first divisor candidate. 693 is odd (2 is not a divisor), but is a multiple of 3: one has 693 = 3 · 231 and n = 2 · 3 · 231. Continue with 231, and 3 as a first divisor candidate. 231 is also a multiple of 3: one has 231 = 3 · 77, and thus n = 2 ...

  8. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Now the product of the factors a − mb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y, with x 2 − y 2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and x − y.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS).